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Abstract—Deep neural networks (DNNs) have emerged as a
promising approach for mobile traffic prediction and capac-
ity forecasting in next-generation wireless networks, leveraging
newly developed architectures to capture spatiotemporal traf-
fic demand for network resource provisioning and allocation.
However, DNN-based traffic forecasting systems are vulnerable
to adversarial attacks in which adversaries inject traffic per-
turbations via compromised devices, leading to erroneous ca-
pacity forecasts and misallocation. Existing defense mechanisms
offer only empirical insights and lack formal guarantees, while
neural network verification research has primarily focused on
classification tasks, leaving regression problems such as mobile
traffic forecasting unexplored. We address this gap by proposing a
formal verification framework that formulates adversarial traffic
injection as hyperrectangle input properties, converts recent
deep learning traffic prediction models into a neural network
verifier-compatible format, and leverages NeuralSAT to provide
robustness proofs for which scenarios the system is robust against
adversarial traffic injection. Preliminary proof-of-concept on the
Telecom Italia Milan dataset demonstrates that our framework
can formally guarantee whether DeepCog, a deep learning
capacity provisioning model, is robust against adversarial traffic
injection, providing network operators with peace of mind when
deploying these models in production environments.

Index Terms—traffic prediction, DNN, formal verification

I. INTRODUCTION

Beyond 5G networks is currently facing the challenge of
a growing number of users and devices, but the physical
wireless resources are limited. Therefore, analyzing traffic and
accurately forecasting user demands is essential for developing
an intelligent network [1]. Network traffic prediction models
operate in the background, analyzing historical traffic demands
to forecast expected future needs, which can be leveraged
by downstream network management services and network
optimization tools [2], [3]. Machine learning and deep learning
models can leverage vast amounts of network measurement
data, exploiting temporal correlations in long historical mea-
surements and spatial dependencies among connected nodes
[4], [5], [6]. Given that network traffic exhibits complex rela-
tionships in both temporal and spatial dimensions, predicting
future traffic volumes is a suitable task for deep learning
models. These models require less domain knowledge and
manual engineering than statistical methods such as Auto-
Regressive Integrated Moving Average (ARIMA) [7].

However, the deployment of deep learning in network man-
agement raises fundamental security concerns, as deep neural
network (DNN)s are vulnerable to adversarial attacks [8]. Such
attacks involve introducing minor input modifications that can
cause DNNs to produce erroneous predictions. In the context

of network traffic prediction, adversaries may infiltrate smart-
phones or IoT devices within the network coverage area [9].
By orchestrating these compromised devices into a botnet,
attackers can strategically inject minimal traffic volumes to
corrupt the DNN’s forecasting capabilities. These adversarial
inputs are deliberately designed to evade anomaly detection
mechanisms and remain within data usage constraints, yet they
can substantially degrade the model’s prediction accuracy.

Consequently, there is increasing interest in explainable
deep learning approaches for critical applications such as
network optimization and management that demand high re-
liability. Existing research [9] has investigated the robustness
of DNN-based mobile traffic forecasting using explanable AI
(XAI) methods, seeking to identify which input features, such
as historical traffic demand from specific base stations, are
most susceptible to adversarial manipulation. These studies
use gradient-weighted class activation mapping (GCAM) and
LayeR-wise backPropagation (LRP) techniques to pinpoint
base stations that are particularly susceptible to traffic-injection
attacks. XAI approaches offer correlational insights to inform
adversarial training procedures for model retraining. Nonethe-
less, non-certifying defense mechanisms, such as adversarial
training, have been shown to be circumvented by more sophis-
ticated attack strategies [10]. To address this ongoing arms
race, there is growing momentum toward defense strategies
employing neural network verification (NNV) [11], [12], [13],
[14], [15], which offer provable guarantees that DNNs remain
resilient to attacks across all inputs within specified bounds.
NNV complement XAI and adversarial training approaches
by establishing the robustness of DNNs through rigorous
mathematical proofs.

Existing NNV research has largely concentrated on veri-
fying DNN-based systems within the Verification of Neural
Networks Competitions (VNN-COMPs) framework [16], with
limited exploration of DNN-based network management ap-
plications [8], [17]. The VNN-COMPs evaluation benchmarks
primarily focus on classification problems in domains such as
computer vision, natural language processing, and autonomous
aviation systems. To the best of our knowledge, verification
of DNNs for regression problems, including mobile network
traffic forecasting, remains largely unexplored.

This work addresses this research gap by leveraging cutting-
edge formal verification methodologies for DNN-based traf-
fic forecasting systems. Our evaluation framework assesses
whether trained DNNs meet performance specifications under
diverse levels of adversarial perturbation. We begin by encod-
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Fig. 1: Overview of system model of deep-learning-based mobile traffic prediction under adversarial traffic injections.

ing various adversarial perturbation levels as hyper-rectangle
input constraints.

II. PRELIMINARIES

A. System Model

A DNN is trained to forecast network traffic volumes at
time step t using historical past traffic volumes from previous
time steps. Formally, for a network slice s, let δs(t) denote
the traffic snapshot at time t, which contains traffic demands
at all base stations for slice s. The DNN takes T historical
traffic snapshots {δs(t− T ), δs(t− T + 1), . . . , δs(t− 1)} as
input and produces a capacity forecast for time t. Let N(·; θ)
be the DNN function parameterized by θ, which maps the
sequence of historical snapshots to a capacity forecast cs(t).
This framework for mobile traffic prediction is particularly
beneficial for the management of next-generation wireless
networks, where accurate capacity forecasting enables efficient
resource allocation and network optimization.

DeepCog [18] is a popular DNN architecture specifically
designed for capacity forecasting in network slicing scenarios.
The architecture follows an encoder-decoder structure tailored
to capture spatiotemporal patterns in mobile network traffic.
The input to DeepCog consists of historical traffic snapshots
δs(t − 1), . . . , δs(t − T ) for network slice s, where each
snapshot δs(t) contains traffic demands at all base stations
at time t. These snapshots are transformed into a 3D tensor
(two spatial dimensions and one temporal dimension) that
preserves traffic spatial-temporal correlations, enabling the 3D
convolutional neural network to exploit them to accurately
forecast future demands.

The neural network architecture comprises two main com-
ponents: (i) an encoder with three 3D-CNN layers that extract
spatiotemporal features from the input tensor, and (ii) a
decoder with fully connected layers that generate capacity
forecasts. The output of DeepCog is a capacity forecast
cs(t) = {c1s(t), . . . , cMs (t)} for network slice s at time t, where
cjs(t) represents the forecasted capacity needed at datacenter
j ∈ M to accommodate future traffic demands. DeepCog em-
ploys a custom loss function that explicitly balances the trade-
off between resource overprovisioning and underprovisioning

(service-level agreement (SLA) violations), rather than min-
imizing standard prediction errors like Mean Absolute Error
or Mean Squared Error. The loss function is parameterized by
α = β/γ, where β is the fixed cost of an SLA violation and γ
is the cost per unit of overprovisioned capacity. For a forecast
error x = cjs(t)−djs(t) at datacenter j, where djs(t) is the actual
demand, the loss function penalizes underestimation (SLA
violations) with cost α and overestimation (overprovisioning)
proportionally to the excess capacity. This design enables
operators to tune the balance between overprovisioning and
unserved demand to align with their economic priorities.

B. Threat Model

We consider an adversary who gains access to compromised
networked devices capable of injecting traffic into a mobile
network (Fig. 1). The attacker’s primary objective is to disrupt
normal network operations through denial-of-service attacks
or, at a minimum, degrade the quality of service. Examples
of such compromised devices include IoT devices and smart-
phones infected with malicious software.

The adversary possesses sufficient technical capabilities to
infiltrate and compromise a subset of network-connected de-
vices, thereby gaining the ability to associate with the network
infrastructure. After establishing network connectivity, the
attacker strategically injects traffic designed to cause service
disruptions by introducing carefully crafted perturbations to
the network load patterns. The feasibility of such attacks has
been demonstrated by real-world incidents, most notably the
Mirai botnet [19]. The adversary can compromise a fraction
of the total devices, and once compromised, traffic injection
becomes straightforward. The malware enabling these attacks
can be distributed through various vectors: embedded in user-
installed applications, distributed via official app stores, or
incentivized by offering users a way to sideload applications
from untrusted web sources. These distribution mechanisms
have been extensively documented in the security literature
[20], [21], [22].

We assume that the attacker does not necessarily possess
knowledge of the trained DNN architecture or parameters used
for traffic prediction. The injected traffic must remain minimal



to avoid detection, as the attacker is constrained by the need
to prevent users from noticing excessive data consumption.
Additionally, mobile data plans typically impose usage limits
and incur costs, further constraining the volume of traffic
that can be injected without raising suspicion. The attacker
injects a limited amount of data to perturb the historical traffic
measurements that serve as input to the traffic prediction
model. These manipulated historical data points may fall
outside the distribution of clean training data, causing the DNN
to produce inaccurate future traffic predictions. The resulting
prediction errors lead to either over- or under-provisioning of
network resources, which, in turn, causes resource misallo-
cation, service degradation, service disruptions, and network
instability. When prediction errors persist over time, they
can establish a continuous feedback loop with the resource
allocation algorithm, amplifying long-term misallocation of
resources.

C. NNV - An Overview

The NNV problem concerns determining whether a given
property ϕ holds for a DNN N . Properties are typically
expressed as implications of the form ϕin =⇒ ϕout, where
ϕin specifies constraints on the inputs of N and ϕout specifies
constraints on the outputs of N . This formulation enables
encoding safety and security requirements for DNNs [15].
A DNN verifier searches for a counterexample input that
satisfies the input property ϕin but causes the output to violate
ϕout. If no such counterexample can be found, the property
is unsatisfiable (UNSAT), indicating that the DNN is proven
robust; otherwise, the property is satisfiable (SAT).

NNV methods can be broadly categorized into two classes:
(1) probabilistic guarantees and (2) deterministic guaran-
tees. Probabilistic approaches, such as randomized smooth-
ing [12], provide high-probability certificates that a DNN
remains robust to L2-norm perturbations within a specified
radius. In contrast, deterministic methods offer absolute guar-
antees of safety against any Lp-norm-constrained perturba-
tions. Deterministic NNV techniques fall into three main cat-
egories: (1) constraint-based approaches [14], (2) abstraction-
based approaches [11], [13], and (3) hybrid approaches [15].
Constraint-based methods can be computationally expensive,
with solution time increasing significantly as the DNN size
grows [14]. Abstraction-based methods address scalability by
employing abstract domains such as polytopes (e.g., Deep-
Poly [11] and CROWN [13]) to enable verification of larger
networks, though at the expense of some accuracy. The
core principle of abstraction-based verification is to construct
polyhedral over-approximations using linear inequalities that
tightly bound the possible outputs of non-linear activation
functions, such as rectified linear unit (ReLU). NeuralSAT [15]
integrates constraint-based and abstraction-based techniques to
extend the range of DNN sizes that can be verified.

III. PROPOSED VERIFICATION FRAMEWORK

A. Local Robustness Properties Formulation

Following the threat model described in Section II, we
assume that an attacker can inject additional traffic into the
network through compromised devices in their botnet. The
adversary’s objective is to introduce carefully crafted pertur-
bations to the historical traffic data fed into the DNN, thereby
causing erroneous capacity forecasts that lead to resource
misallocation and service degradation.

To formally verify the robustness of the considered DNN-
based traffic forecasting scheme, we define input specifications
ϕin := [ηL, ηU ] to encode permitted adversarial traffic injec-
tion levels. Specifically, ηL and ηU are vectors having the
same dimensionality as the input traffic snapshot δs(t), where
each component represents the lower and upper bounds on
the additional traffic that can be injected at each base station.
The adversary seeks to generate an adversarial traffic snap-
shot δ′s(t) within a constrained neighborhood of the original
traffic δs(t) such that the DNN output becomes erroneous.
This adversarial input is constructed by adding a bounded
perturbation δ′s(t) = δs(t) + η to the original traffic snapshot
δs(t), where η ∈ [ηL, ηU ] represents the adversarial noise
corresponding to the additional traffic injected by the botnet.
The input property ϕin thus constrains the perturbed traffic
to lie within the hyperrectangle [ηL, ηU ] = [δs(t), δs(t) + η],
ensuring that the verification covers all possible adversarial
traffic injection scenarios within the specified bounds.

B. Output Properties

Recall that for a forecast error x = cjs(t) − djs(t) at
datacenter j, where cjs(t) is the forecasted capacity and djs(t)
is the actual demand, DeepCog’s loss function ℓ′(x) is defined
as:

ℓ′(x) =


α− ϵ · x if x ≤ 0

α− 1
ϵx if 0 < x ≤ ϵα

x− αϵ if x > ϵα

(1)

where α = β/γ is the ratio of SLA violation cost β to
overprovisioning cost per unit γ, and ϵ is a small constant
that enables gradient-based training.

To complement the robustness property, we construct two
output properties that constrain the predicted capacity relative
to actual demand:

1) Overprovisioning Bound: The predicted capacity should
not exceed (1 + ζ) times the actual demand to avoid
wasting resources:

ϕover : cjs(t) ≤ (1 + ζ) · djs(t) (2)

2) Underprovisioning Bound: The predicted capacity
should not fall below (1 − ζ) times the actual demand
to prevent SLA violations:

ϕunder : cjs(t) ≥ (1− ζ) · djs(t) (3)

Together, these properties enforce:

(1− ζ) · djs(t) ≤ cjs(t) ≤ (1 + ζ) · djs(t) (4)



This dual-property approach provides a practical guarantee:
avoiding excessive overprovisioning while ensuring sufficient
capacity to meet user SLAs.

C. Verifier

To solve the verification problem formulated with input
property ϕin and output property ϕout, we adopt state-of-
the-art neural network verifier NeuralSAT [15], [23] as a
black-box tool. NeuralSAT is a top-performing verifier from
the latest VNN-COMPs [16] that employs GPU-based linear
relaxations and branch-and-bound techniques to efficiently
verify DNN properties.

We convert our verification problem into the standard VNN-
COMPs format, which consists of three components: (1) the
DeepCog DNN model in ONNX format, (2) input properties
ϕin specified in VNNLIB format that encode the adversarial
traffic injection bounds [δs(t)+ηL, δ

s(t)+ηU ], and (3) output
properties ϕout in VNNLIB format that encode the loss func-
tion threshold constraint L(cs(t), ds(t)) ≤ ζ · L(cs0(t), ds(t)).
The conversion of DeepCog’s piecewise linear loss function
into linear and ReLU layers, as described in the previous
subsection, ensures compatibility with NeuralSAT’s veri-
fication engine. Since 3D convolution is not supported, we
reimplement it as two consecutive 2D convolutional layers.
This does not reduce the forecast accuracy, while allowing the
exported model to be compatible with NeuralSAT.

For each verification instance, NeuralSAT returns one
of three possible outcomes: SAT, UNSAT, or timeout. A
SAT result indicates that the verification problem is satisfiable,
meaning there exists at least one adversarial input within the
specified bounds [ηL, ηU ] that causes the DeepCog model
to violate the output property ϕout, e.g., the loss function
exceeds the threshold ζ. This result demonstrates a concrete
vulnerability: adversarial traffic injection can degrade capacity
forecasting performance beyond the acceptable threshold. An
UNSAT result indicates that the verification problem is un-
satisfiable, meaning no adversarial input within the specified
bounds can violate the output property. This result provides
a formal mathematical guarantee that the DeepCog model is
robust against all possible adversarial traffic injection scenarios
within the given input constraints. A timeout result indi-
cates that the verification instance exceeds the computational
time limit, meaning the verifier cannot determine within the
allocated resources whether the property holds.

The soundness of NeuralSAT’s verification procedure
ensures that when it returns UNSAT, the result is math-
ematically sound, meaning no adversary can successfully
attack the DeepCog model under the specified input and
output conditions. This soundness guarantee is fundamental
to our verification framework: if NeuralSAT certifies that
a DeepCog model is robust (returns UNSAT), then the claim
is guaranteed to be true, providing network operators with
confidence when deploying the verified model for resource
provisioning in production environments. This formal assur-
ance goes beyond empirical testing methods, which can only
demonstrate the existence of vulnerabilities through specific

adversarial examples but cannot prove their absence across
the entire continuous input space.

IV. EVALUATION RESULTS

A. Evaluation Setups

1) Dataset: We evaluate our verification framework using
the Telecom Italia Milan dataset, which is a publicly available
mobile traffic dataset widely used in the literature [18]. The
dataset contains mobile traffic data collected in 2014 from
Milan, Italy, covering 1,728 base stations and aggregated into
a grid of approximately 10,000 square cells using Voronoi tes-
sellation techniques. The data includes SMS, voice calls, and
Internet activities recorded at 10-minute granularity. Following
standard practice in mobile traffic prediction research, we use
Internet activities as a proxy for mobile traffic volume. This
dataset provides a spatial-temporal pattern of internet usage,
making it well-suited for training and evaluating DeepCog-
based traffic forecasting models.

2) DNN Hyperparameters, input/output properties: A
DeepCog model is trained using an Adam optimizer with a
learning rate of 3e−4 over 50 epochs, employing Rectified
Linear Unit (ReLU) as the activation function for all layers. We
use a standard 80:20 training-testing split, where each sample
represents a traffic-demand snapshot within a 10-minute time
interval.

For the prediction methodology, we select a representative
area AMilan ∈ GMilan of 5× 5 cells similar to [9]. Within this
area, we train small models on 5× 5 grids, where each model
forecasts the capacity/traffic of the central cell only.

The DeepCog predictor employs a parameter α that rep-
resents the amount of overprovisioned capacity units that
determine a penalty equivalent to one SLA violation. A larger
α implies higher SLA violation fees for the operator, thus
influencing the balance between overprovisioning and SLA
violations. For the Milan dataset, we set α = 2 as suggested
in [18] to prioritize avoiding SLA violations while allowing
minimal overprovisioning.

3) Evaluation Metrics: For each verification instance,
NeuralSAT returns one of three possible outcomes: SAT,
UNSAT, or timeout. The primary performance metric is
the number of instances that return SAT (vulnerability found),
UNSAT (formal robustness guarantee), or timeout (unknown
within the time limit). These are commonly used to compare
the performance of different verification methods [16], [23]
and provides a standardized evaluation framework for assess-
ing the robustness of DNN-based traffic forecasting models.

B. Robustness Analysis under Adversarial Traffic Injection

Tab. I and Tab. II present the verification results for adver-
sarial traffic injection scenarios, where input traffic volumes
are perturbed by varying percentages. Each cell reports the
proportion of instances yielding SAT, UNSAT, or TIMEOUT
for a given tolerance parameter ζ and injection level η. A
SAT outcome indicates that the verifier identified at least
one adversarial input causing the model to violate the output
property (i.e., forecast error exceeding ζ). Conversely, UNSAT



Percentage of injected traffic

+1% +5% +10% +15% +20%

ζ = 1% 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0
ζ = 5% 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0
ζ = 10% 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0

TABLE I: Fraction of UNSAT, SAT, TIMEOUT for under-
estimation of user demand

Percentage of injected traffic

+1% +5% +10% +15% +20%

ζ = 1% 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0 0.0/1.0/0.0 0.0/1.0/0.0
ζ = 5% 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0 0.0/0.0/1.0 0.0/1.0/0.0
ζ = 10% 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0 0.0/0.0/1.0

TABLE II: Fraction of UNSAT, SAT, TIMEOUT for overes-
timation of user demand

certifies robustness under all perturbations within the specified
bounds, while TIMEOUT denotes inconclusive verification
within the allotted time.

• Underestimation scenario (Tab. I): Across all injection
levels and underestimation tolerances, the verifier consis-
tently returns SAT. Although we set α to guide DeepCog
to reduce underestimation, the model was still vulnerable
on all properties. This demonstrates that adversary can
easily induce capacity underestimation beyond acceptable
thresholds, exposing the model to potential denial-of-
service or quality-of-service degradation attacks.

• Overestimation scenario (Tab. II): In contrast, the model
exhibits strong robustness against overestimation. For
small injection levels (+1%, +5%, +10%), NeuralSAT
frequently returns UNSAT, confirming the model’s ability
to avoid excessive overprovisioning and resource waste.
However, this property is less critical in practice, as
service providers typically tolerate minor overprovision-
ing. At higher injection levels (+15% and +20%), the
results shift toward SAT or TIMEOUT, indicating that
extreme perturbations can compromise robustness and
require significant overprovisioning.

Overall, these findings reveal an asymmetric robustness
profile: the model is provably resilient to overestimation
under moderate perturbations but remains highly vulnerable
to underestimation attacks.

V. CONCLUSION

We presented a formal verification framework for deep
learning–based mobile traffic prediction, enabling provable
robustness against adversarial traffic injection. By encoding
input perturbations and defining output properties that enforce
resource allocation bounds, our approach leverages NeuralSAT
to provide sound robustness guarantees. Evaluation on the
Telecom Italia Milan dataset reveals an asymmetric robustness
profile: the model is resilient to overestimation under moderate
perturbations but highly vulnerable to underestimation attacks.
Future work will extend this study with more comprehensive
evaluations across a wider range of datasets and models to
generalize our findings and improve robustness in diverse
network scenarios.
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